Главная » Потолки » Лазерный диод как подключить. Простая схема управляет лазерным диодом и контролирует выходную мощность. Особенности полупроводника и его подсоединения

Лазерный диод как подключить. Простая схема управляет лазерным диодом и контролирует выходную мощность. Особенности полупроводника и его подсоединения

Все конечно знают лазерные указки. Такие указки только светят и не имеют нагревательного эффекта. Это и неудивительно, т. к. его оптическая сила всего 1 мВт (максимальная 5 мВт). Автор хотел сделать лазер высокой мощности, но строительство классического лазера является очень сложным, поэтому он поступил иначе...

В наличии оказались три сломанных CD-RW привода. Лазеры в них, как правило, имеют мощность при импульсном режиме 100 - 250 мВт, при непрерывном- 50 - 125 МВт. Работают в инфракрасном диапазоне на длине волны 780 нм. Средний рабочий ток 100 мА - 150 мА, импульсный до 200 мА. При подключении диода лучше не рисковать и настроить ток в цепи питания около 100 мА (можно и больше, но существует риск разрушения диодов, так как его тип трудно установить). Падение напряжения на диоде около 2,1 - 2,15 В. Для ограничения тока можно использовать резистор. Это не идеальное решение, но это работает. Лучше конечно применить источник питания со стабилизированным током с 7805 или LM317.

В оригинальной конструкции лазерного устройства, лазерный луч фокусируется c расстоянием в несколько мм, существуют две линзы: первая преобразует расходящийся свет диода в параллельный пучок, вторая- фокусирует его на необходимом расстоянии. Такой диод не подходит для экспериментов, поэтому нужна небольшая переделка.

Есть два возможных решения:
1) Снимите лазерный диод и применяем к нему оптику от другого устройства (лазерный принтер. Это подходит только для лазерных диодов с обычными корпусами диаметром 5,6 мм, которые стыкуются со старонней оптикой.
2) Оставляем лазерный диод в оригинальной части, удаляем одну из линз (ближнюю к CD диску). Вторую линзу смещаем от диода и фокусируем луч в точку на нужное расстояние (1 см до 1 м или более).
Лазерный диод должен быть соосно совмещен с линзой, в противном случае вы не сможете с фокусировать пучок. Лазерные диоды никогда не должны быть включены, если они не помещены в достаточно большом металлический корпус, который служит теплоотводом!

То, что вы можете найти в различных устройствах для записи дисков: В DVD-RW дисководах есть 2 лазерные диоды: красный для сжигание DVD и инфракрасный для сжигания CD. В DVD-ROM приводах (только чтение) может предложить вам только слабый красный диод на 1 мВт, они хороши только для конструирования указок. Они не смогут зажигать или вырезать что-нибудь. В комбинированных CD-RW / DVD-ROM (прожиг CD и только читает DVD) вы можете найти диод инфракрасного и слабый красный диод (как в DVD-ROM). И, наконец, диоды из только читатающих CD-ROM совершенно бесполезны:).

Внимание! Лазерные диоды из CD-RW излучают невидимое лазерное излучение, и они очень опасны! Их свет может повредить глаза. Вы никогда не должны смотреть в рабочей диода даже без линзы или указать его на отражающей поверхности. Лазерный луч может вызвать ожоги или пожар. Это, как правило, класс лазера III b. Все, что вы делаете, вы делаете на свой страх и риск.

Простейшее подключение лазерного диода.

Подключение лазерного диода

R= (U-Ud) /I

Расчет сопротивления серии лазерного диода (напряжения U должно быть по крайней мере выше на 1 В чем падение напряжения Ud на лазерном диоде. Падение напряжения Ud 2,15 В для инфракрасного и 2,5 В для красных диодов. Никогда не устанавливайте ток лазерного диода выше 0,2 A.

Примечание: Если диод подключен к любому источнику питания (даже регулируемому) без сопротивления или регулятора тока, диод будет уничтожен! Лазерный диод имеет почти нулевое сопротивление. Падение напряжения 2,1 В не означает, что диод может быть подключен к 2.1 В!


При генерации лазерного излучения более важен не ток лазерного диода, а его напряжение. В момент подачи на анод положительного потенциала, начинается смещение p-n перехода по прямому направлению. Это начинается инжекция дырок из p-зоны в n и аналогичную инжекцию электронов в противоположном направлении. Близкое расположение электронов и дырок запускает их рекомбинаци. Данное действие сопровождается генерацией фотонов определённой длиной волны

Это физическое явление получило название спонтанного излучения и применительно к лазерным диодам считается основным способом генерации лазерного излучения.

Полупроводниковый кристалл лазерного диода представляет собой тонкую прямоугольную пластинку. Деление на p и n части здесь осуществляется по принципу не слево направо, а сверху вниз. То есть, в верхней части кристаллав расположена p-область, а ниже - n-область.

Поэтому площадь p-n перехода достаточно велика. У лазерного диода торцевые стороны отполированы, т.к для формирования оптического резонатора (Фабри-Перо) необходимо наличие параллельных плоскостей максимальной гладкости. Перпендикулярно направленный в отношении одной из них фотон будет двигаться по всему оптическому волноводу, периодически отражаясь от боковых торцевых сторон, пока не выйдет из резонатора.

Во время такого движения фотон спровоцирует нескольких актов вынужденной рекомбинации, т.е генерирование аналогичных фотонов и тем самым усиливая лазерное излучение. В тот момент времени, когда усиление достаточно для перекрытия потерь, начинается лазерная генерация.

Главная отличительная особенность между светодиодами и лазерными диодами – это ширина спектра излучения. Светодиоды имеют широкий спектр излучения, в то время как лазерные имеют очень узкий спектр.


Принцип работы обоих полупроводниковых источников базируется на явлении электролюминесценции-излучении света материалом, через который течет электрический ток, вызванный электрическим полем. Излучение вследствие электролюминесценции характеризуется сравнительно узким спектром шириной в 0,1…3 нм для лазерных диодов и 10…50 нм у светодиодов.

Для подключения лазерного диода необходима специальная электронная схема, называемая драйвером лазерного диода. На практическом примере ниже мы покажем, как своими руками собрать простой драйвер лазерного диода на основе стабилизатора напряжения LM317.

Драйвер это особая схема подключения, которая применяется для ограничения тока и дальнейшей подачи его на лазерный диод, чтобы он работал правильно и не сгорел при первом же включении, в случае если мы напрямую подключим его к блоку питания.

Если ток будет низким лазерный светодиод не включится из-за отсутствия необходимого уровня мощности. Таким образом, схема драйвера предназначена для обеспечения правильного токового номинала, при котором лазерный диод перейдет в свое рабочее состояние. Простому светодиоду хватит обычного резистора для ограничения тока, но в случае с лазерным нам понадобится схема подключения для ограничения и регулировки тока. Для этих целей отлично подойдет микросборка .

Трехвыводная микросхема LM317 это типовой стабилизатор напряжения. На своем выходе он может выдавать напряжение от 1.25 до 37 вольт. Внешний вид LM317 с подписанными выводами представлен на изображении выше.

Микросхема является отличным регулируемым стабилизатором, иными словами можно легко изменять значение напряжения на выходе в зависимости от потребностей на выходе схемы, используя два внешних сопротивления, подключенные к линии регулировки (Adjust). Эти два резистора работают как делитель напряжения, применяемый для уменьшения уровня выходного напряжения.


Конструкцию за пять минут можно собрать на макетной плате. Работает схема так. Когда от батарейки начинает идти напряжение номиналом 9 вольт, оно сначала протекает через керамический конденсатор (0.1 мкФ). Эта емкость применяется для фильтрации высокочастотного шума от источника постоянного тока и обеспечивает входной сигнал для стабилизатора. Потенциометр (10 КОм) и сопротивления (330 Ом), подключенные к линии настройки, применяются в роли схемы ограничения напряжения. Выходное напряжение полностью зависит от значения этих сопротивлений. Выходное напряжение стабилизатора попадает на фильтр второго конденсатора. Эта емкость ведет себя как балансировщик мощности при фильтрации флуктуирующих сигналов. В результате можно изменять интенсивность лазерного излучения, вращая ручку потенциометра.

Лазерные диоды находят применение в самых различных радиолюбительских конструкциях. Питание лазерного диода может осуществляться, как от батареи или аккумуляторного источника питания, так и от стационарной сети промышленным напряжением 220 вольт. В последнем случае необходима более тщательная защита от всплесков тока или напряжения, поскольку лазерный диод представляет собой довольно чувствительный к таким явлениям элемент и может выйти из строя даже при очень кратковременном превышении тока или напряжения.

Подключение диода от источника постоянного тока.

В состав схемы входят батарея или аккумулятор напряжением девять вольт, токоограничивающий резистор и непосредственно лазерный модуль. При неимении отдельного лазерного диода, взять оный можно из DVD привода. При этом следует помнить, что в данном случае имеется в виду компьютерный, а никак не обычный проигрыватель. С большой осторожностью лазер извлекается из него, после чего требуется определиться с подключением питания. Как правило, производитель снабжает лазерные диоды тремя выводами, двумя по краям и одним посредине. В большинстве случаев именно средний электрод подключается к минусовой клемме источника питания. К положительному полюсу необходимо подключить либо правый, либо левый, здесь всё зависит от производителя и марки лазерного оборудования. Для того чтобы определить какой именно вывод является положительным, следует подать питание на диод. Для этой цели используются две батарейки по 1,5 вольта и резистор в пять Ом. Минусовые выводы батареек напрямую подключаются к центральному минусовому выводу диода. Плюсовая сторона батареек, через резистор, поочерёдно подключается к каждой из двух оставшихся клемм диода. Как только лазер слегка засветится, это значит, что плюсовой полюс найден. Таким способом весьма быстро и просто можно определить полярность, поскольку принцип работы лазерного диода идентичен работе обычного вентиля. Питание будущего лазера организовывается от двух или трёх пальчиковых батареек, однако при желании для этой цели можно использовать и аккумулятор мобильного телефона. В последнем случае необходимо использовать дополнительный ограничительный резистор на двадцать пять Ом, а в случае с батарейками применять резистор в пять Ом.

Подключение диода от сети 220 В

При таком подключении могут возникнуть нежелательные выбросы напряжения и высокочастотные всплески. В таком случае следует обеспечить дополнительную защиту чувствительному элементу, дабы избежать его поломки. Схема состоит из стабилизатора напряжения, конденсатора, токоограничивающих резисторов и непосредственно лазерного диода. Стабилизатор напряжения и сопротивления, образуют блок, препятствующий токовым выбросам. От бросков напряжения, устанавливается стабилитрон, а конденсатор поможет препятствовать высокочастотным всплескам. В результате использования такой схемы, стабильная работа лазерного диода полностью гарантирована.

Эта схема, достаточно точная и не требующая большого числа компонентов, предназначена для управления лазерным диодом и разработана в соответствии с требованиями, предъявляемыми к оборудованию медицинского назначения. Сейчас устройство проходит клинические испытания. Характеристики лазерных диодов подвержены кратко- и долговременному дрейфу, обусловленному температурой и старением. Обычно они управляются постоянным током, поэтому их выходную оптическую мощность контролируют и, в соответствии с ее изменениями, регулируют ток.

Корпус конструкции заземлен, поэтому конфигурация источника постоянного тока рассчитана на включение силового транзистора в верхнее плечо лазера, а не на более простой вариант противоположный вариант. Кроме того, чтобы избежать «татуировки» пациента, ток должен быть изначально ограничен.

В схеме с однополярным питанием +5 В резистор R1, измеряющий и ограничивающий ток, и p-канальный МОП-транзистор Q1 образуют истоковый повторитель (Рисунок 1). Затвор МОП-транзистора находится под напряжением, немного превышающем напряжение истока, поэтому транзистор частично открыт, и ток лазерного диода создает падение напряжения на резисторе R1. В худшем случае, когда Q1 открыт полностью, максимальный ток лазера определяется выражением

R DS(SAT) = 25 мОм - сопротивление открытого канала МОП-транзистора,
V LASER = 2.0 В - напряжение на лазерном диоде.

Значения R DS(SAT) и V LASER были взяты из справочных данных на транзистор и лазерный диод, соответственно. Выбор сопротивления резистора R1 определяется требованиями к величине тока лазера (в данном случае, 250 мА) с учетом коррекции, вносимой прямым напряжением лазерного диода, типичное значение которого равно 2.0 В. Решая уравнение относительно R1, получаем:

где I LASER = 250 мА.

Сопротивление R DS(SAT) настолько мало, что его можно не учитывать. При известных значениях R1 и максимального тока лазерного диода мощность, рассеиваемая R1, может быть рассчитана по формуле

откуда следует, что резистор с допустимой рассеиваемой мощностью 800 мВт обеспечит небольшой дополнительный запас.

Величина тока лазера устанавливается с помощью ЦАП, выходное напряжение которого задается логометрически. В качестве опорного здесь используется напряжение источника +5 В, поэтому выход ЦАП отслеживает все флуктуации питания. Во время работы на выходе АЦП устанавливается требуемая величина управляющего напряжения. Делитель R2, R3 масштабирует эту уставку относительно номинального питания +5 В.

Например, если выходное напряжение ЦАП задано равным половине шкалы, то есть +2.5 В, напряжение между R2 и R3, (или на неинвертирующем входе ОУ IC1), будет равно +3.5 В. Включенная в контур обратной связи IC1 регулирует напряжение на затворе Q1 и, соответственно, ток, походящий через R1, Q1 и лазерный диод. Режим схемы стабилизируется, когда напряжение обратной связи станет равным +3.5 В. В этом установившемся режиме на резисторе R1 падает 5 В - 3.5 В = 1.5 В, и ток равен 125 мА, то есть, находится в середине шкалы. Аналогично, если на выходе ЦАП установить минимальное значение 0 В, напряжение на неинвертирующем входе IC1 будет равно +2 В. IC1 будет увеличивать напряжение на затворе Q1 до тех пор, пока падение напряжения на R1 не вырастет до 3 В, а ток, соответственно, до 250 мА. Это точка насыщения, в которой Q1 полностью открыт, и прямое напряжение на лазерном диоде равно +5 В минус падение напряжения на R1.

В полную схему должны быть включены элементы R4 и C1, обеспечивающие стабильность контура регулирования и имеющие частоту среза f, равную

Отдельное внимание следует уделить процессу, происходящему в схеме при скачкообразном изменении управляющего напряжения, на время которого ОУ, работавший до этого как сумматор напряжений уставки и обратной связи, становится повторителем напряжения, и на его выходе стремится возникнуть ступенька. В связи с этим в нашем примере добавлен конденсатор C2, образующий низкочастотный фильтр напряжения уставки с частотой среза

где R2||R3 = 12 кОм.

Если частота среза этого фильтра будет намного меньше полосы пропускания цепи ОС, ОУ сможет отслеживать ступенчатые изменения уставки с минимальными выбросами во время переключения ЦАП.

R5 обеспечивает некоторое смещение ОУ за счет того, что небольшой ток всегда будет гарантированно протекать через резистор R1. Когда на выходе ЦАП установлено напряжение полной шкалы +5 В, ток лазера, задаваемый операционным усилителем, всегда будет немного превышать значение, определяемое уставкой. Поэтому выход ОУ, пытаясь выключить Q1, будет входить в насыщение. Без резистора R5 входное напряжение смещения ОУ могло бы восприниматься как ложное значение уставки и приводило к включению Q1 для восстановления баланса.

Это одна из основных причин, по которой используется логометрическое включение ЦАП. Если бы опорное напряжение ЦАП было фиксированным, программирование малых токов была бы практически невозможным. Если на выходе ЦАП установить напряжение чуть ниже точного значения +5 В, то даже при небольших флуктуациях напряжения питания +5 В управляющее напряжение будет изменяться весьма существенно. Однако в логометрической схеме ЦАП отслеживает изменения напряжения питания +5 В, и относительное управляющее напряжение на его выходе остается стабильным.

Платой за возможность точно задавать слабые токи является плохой коэффициент подавления пульсаций питания. Однако в том медицинском приложении, для которого предназначался лазер, петля стабилизации тока сама является частью петли стабилизации мощности, и пульсации питания в ней минимальны. Если же потребуется, на плату можно добавить небольшой стабилизатор напряжения, и ценой некоторого увеличения числа компонентов вы получите стабильное, малошумящее питание лазера.

Каждый из нас держал в руках лазерную указку. Несмотря на декоративность применения, в ней находится самый настоящий лазер, собранный на основе полупроводникового диода. Такие же элементы устанавливаются на лазерных уровнях и .

Следующее популярное изделие, собранное на полупроводнике – записывающий DVD привод вашего компьютера. В нем установлен более мощный лазерный диод, обладающей термической разрушительной силой.

Это позволяет прожигать слой диска, нанося на него дорожки с цифровой информацией.

Как работает полупроводниковый лазер?

Устройства подобного типа недорогие в производстве, конструкция достаточно массовая. Принцип лазерных (полупроводниковых) диодов основан на использовании классического p-n перехода. Работает такой переход, как и в обычных светодиодах.

Разница в организации излучения: светодиоды излучают «спонтанно», а лазерные диоды «вынужденно».

Общий принцип формирования так называемой «заселенности» квантового излучения выполняется без зеркал. Края кристалла скалываются механическим путем, обеспечивая эффект преломления на торцах, сродни зеркальной поверхности.

Для получения различного типа излучения может использоваться «гомопереход», когда оба полупроводника одинаковые, или «гетеропереход», с разными материалами перехода.


Собственно лазерный диод является доступной радиодеталью. Его можно купить в магазинах, торгующих радиодеталями, а можно извлечь из старого привода DVD-R (DVD-RW).

Важно! Даже простой лазер, используемый в световых указках, может серьезно повредить сетчатку глаза.

Более мощные установки, с прожигающим лучом, могут лишить зрения или нанести ожоги кожного покрова. Поэтому при работе с подобными устройствами, соблюдайте предельную осторожность.

Имея в распоряжении такой диод, вы сможете легко изготовить мощный лазер своими руками. Фактически, изделие может быть вовсе бесплатным, или обойдется вам за смешные деньги.

Лазер своими руками из ДВД привода

Для начала, необходимо раздобыть сам привод. Его можно снять со старого компьютера или приобрести на барахолке за символическую стоимость.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта