Главная » Расчеты » Фазоинвертор из канализационной трубы 110. Акустическая система с фазоинвертором своими руками. Где установить: в багажнике или под сиденьем

Фазоинвертор из канализационной трубы 110. Акустическая система с фазоинвертором своими руками. Где установить: в багажнике или под сиденьем

Я не проголосовал ни за, ни против. За не могу по причинам неверия в прибор. Против из за
чувства товарищества. Можете заклеймить меня позором за второе.
Могу сразу сказать, генератором резонансных частот(ГРЧ) не пользовался и даже не собирал. Как он на практике работает не знаю. Причина в том, что на тот момент у меня уже был генератор и милливольтметр, а прочитав статью Голунчикова не понял каким образом с помощью ГРЧ можно настроить ФИ правильно. И теперь не понимаю. Знаком, но не работал практически.
Давайте задумаемся и внимательно почитаем, что написано в статьях:
В.Бурундуков пишет, что с помощью данного прибора можно быстро измерить резонансную частоту акустического агрегата. Хорошо, а каким образом? Запустили генератор, он загенерил, и что? Как можно определить эту частоту? На слух? Конкретно сколько там герц?
Может кто нибудь ответить?
Далее он пишет, что резонансные частоты определяют с помощью соответствующих измерительных приборов. Приехали. Резонансные частоты уже известны. Скорее всего динамика и без ящика. И речь скорее всего о сравнении того и этого. Т.е до конца не понятен смысл применения устройства.
А деле настройки ФИ как раз все понятно, во всех статьях четко написано: генерация возникает на частоте резонанса громкоговорителя в соответствующем объеме. Т.е это не
резонансная частота динамика в открытом пространстве, это резонанс системы. Ставим дин в большой объем-резонанс один, берем объем поменьше, резонас другой.
Правильно или нет?
Времена были давние, про Тиля со Смоллом мало кто знал, по крайней мере математический расчет ФИ был недоступен. Были разные методики, это не важно.
Громкоговоритель Голунчикова возможно и можно приемлимо настроить, там все таки объем ящика не маленький, да еще до отказа заполненный звукопоглотителем. т.е резонанс дина в ящике ненамного должен повыситься. Видимо тоже самое касается других крупных АС.
Едем дальше. Нам предлагают настроить ФИ на резонансную частоту динамика в ящике.
Пусть. Пусть Fs (резонанс в свободном пространстве), равный около 30гц станет в ящике равным,...ну 40 Гц.Резонанс в ящике обозначим Fc. В принципе нормально, настроив ФИ на эту частоту ничего гадкого не произойдет. Работать будет, не вопрос. Не совсем точно, но если учитывать еще и помещение и местоположение АС все хорошо. Не гладкая теоретическая АЧХ не пугает, все равно в помещении она на НЧ напоминает горы.

Теперь возьмем другой пример и попробуем настроить таким же образом АС Салтыкова.
Объем около 9л. Дин 6ГД-6 или 10ГД-34. Резонанс (Fs) этих динов около 80 Гц. Редкие экзэмпляры пониже. Но редкие. Итак, в ящике 9 литров резонанс уйдет выше 80 Гц.
Надеюсь с этим спорить никто не будет? Вот и на эту частоту и настроится ФИ при применении этого прибора. А надо, как вы помните надо (по моему) около 50-55Гц.
Как вам?
Укажите в чем я не прав?

Теперь о современном. По авторитетным источникам (Виноградова и Алдошина достаточно авторитетны, если не легендарны) есть параметр полной добротности равный 0.383 , при котором ФИ настраивается на резонансную частоту дина в открытом пространстве (не в ящике). При этом объем ящика берется меньше эквивалентного объема дина в 1.41раза.
Т.е гибкость воздуха в ящике меньше соответствующего параметра дина.
Наверно можно высчитать случаи, когда ФИ нужно настраивать на резонанс дина в ящике, думаю этих случаев сочетаний парметров единицы.
Если же добротность больше 0.383 то всегда ФИ настраивается ниже чем Fs. В обязательном порядке.
По большому счету ФИ будет работать всегда, исключение только случай, когда настроено так низко, что ФИ становится закрытым ящиком с дырой. Но это маловероятный случай.
Если вся цепочка (усилитель, кабель до АС, и АС) построены нормально, может даже и горб
на АЧХ не повредит. Может даже и повышенная добротность дина не помеха. Если остальные компоненты (УМ и кабель) с этим справятся, ничего страшного в кривой АЧХ нет.
Если конечно, слуху нравиться. Все равно, везде окончательная настройка ФИ идет на слух.

Вот как то так. По моему получается, что прибор бесполезен. Ни быстро измерить, ни настроить.

«Колонкостроительством» я начал заниматься в начале 80-х. И если вначале это был просто «динамик в ящике», то потом, естественно началось изучение влияния параметров ящика (и фазоинвертора) на звучание динамика.

Есть много «сабвуферостроителей», но для подавляющего большинства это просто «динамик в ящике», и чем больше, тем лучше. Да, в какой-то степени, для закрытого ящика это правильно. Но для фазоинвертора…

Фазоинвертор требует тщательной настройки. А что мы видим на практике? В качестве фазоинвертора люди ставят канализационные трубы произвольной длины, делают «щелевые фазоинверторы» по образу: «по таким размерам Вася делал», ставя при этом другой динамик. Тот, кто представляет это – ограничивается изготовлением закрытого ящика (и правильно делает!).

Конечно, есть замечательные программы моделирования, например, JBL SpeakerShop. Но все они требуют введения кучи исходных параметров. И даже зная их, расхождение с практикой получается, как правило – огромное (динамик оказался немного другой, ящик чуть отличается по размеру, наполнитель не знаем какой и сколько, труба фазоинвертора чуть другая, не знаем акустического сопротивления и т.п.)

Существует простая методика для настройки фазоинвертора, при которой не требуется знать точные исходные данные динамиков, ящиков, а также не требуются сложные измерительные приборы или математические расчёты. Всё уже было давно продумано и проверено на практике!

Хочу рассказать о простой методике настройки фазоинвертора, которая даёт погрешность не более 5%. Методике, существующей более 30-ти лет. Я ей пользовался еще, будучи школьником.

Чем ящик с фазоинвертором отличается от закрытого ящика?

Любой динамик, как механическая система, имеет собственную резонансную частоту. Выше этой частоты динамик звучит «довольно гладко», а ниже – уровень, создаваемого им звукового давления, падает. Падает со скоростью 12 дБ на октаву (т.е. в 4 раза на двукратное снижение частоты). За «нижнюю границу воспроизводимых частот» принято считать частоту, на которой уровень падает на 6 дБ (т.е. в 2 раза).

АЧХ динамика в открытом пространстве

Установив динамик в ящик, его резонансная частота несколько повысится, за счёт того, что к упругости подвеса диффузора добавится упругость сжимаемого в ящике воздуха. Подъём резонансной частоты неизбежно «потянет за собой» вверх и нижнюю границу воспроизводимых частот. Чем меньше объём воздуха в ящике, тем выше его упругость, и, следовательно, выше резонансная частота. Отсюда и желание «сделать ящик побо-о-о-ольше».

Жёлтая линия – АЧХ динамика в закрытом ящике

Сделать ящик «побольше» в некоторой степени можно не увеличивая его физические размеры. Для этого ящик заполняют поглощающим материалом. Не будем вдаваться в физику этого процесса, но по мере увеличения количества наполнителя, резонансная частота динамика в ящике понижается (увеличивается «эквивалентный объём» ящика). Если наполнителя слишком много, то резонансная частота начинает повышаться снова.

Опустим влияние размеров ящика на другие параметры, такие как добротность. Оставим это опытным «колонкостроителям». В большинстве практических случаев, из-за ограниченного пространства, объём ящика получается довольно близкий к оптимальному (мы же не строим колонки размером со шкаф). И смысл статьи, не загружать вас сложными формулами и расчётами.

Отвлеклись. С закрытым ящиком всё понятно, а что даёт нам фазоинвертор? Фазоинвертор – это «труба» (не обязательно круглая, может быть и прямоугольного сечения и узкая щель) определённой длины, которая совместно с объёмом воздуха в ящике имеет собственный резонанс. На этом «втором резонансе» поднимается звуковая отдача колонки. Частоту резонанса выбирают несколько ниже частоты резонанса динамика в ящике, т.е. в области, где у динамика начинается спад звукового давления. Следовательно, там, где у динамика наблюдается спад, появляется подъём, который в какой-то степени этот спад компенсирует, расширяя нижнюю граничную частоту воспроизводимых частот.

Красная линия – АЧХ динамика в закрытом ящике с фазоинвертором

Стоит отметить, что ниже частоты резонанса фазоинвертора спад звукового давления будет круче, чем у закрытого ящика и составит 24 дБ на октаву.

Таким образом, фазоинвертор позволяет расширить диапазон воспроизводимых частот в сторону нижних частот. Так как же выбрать частоту резонанса фазоинвертора?

Если частота резонанса фазоинвертора будет выше оптимальной, т.е. она будет находиться близко к резонансной частоте динамика в ящике, то мы получим «перекомпенсацию» в виде выпирающего горба на частотной характеристике. Звучание будет бочкообразным. Если частоту выбрать слишком низкую, то подъём уровня не будет ощущаться, т.к. на низких частотах отдача динамика падает слишком сильно (недокомпенсировали).

Голубые линии – не оптимальная настройка фазоинвертора

Это очень тонкий момент – или фазоинвертор даст эффект, или не даст никакого, или, наоборот, испортит звук! Частоту фазоинвертора нужно выбирать очень точно! Но где взять эту точность в гаражно-домашних условиях?

На самом деле, коэффициент пропорциональности между частотой резонанса динамика в ящике и частотой резонанса фазоинвертора, в подавляющем большинстве реальных конструкций составляет 0,61 – 0,65, и если принять его равным 0,63, то ошибка составит не более 5%.

1. Виноградова Э.Л. «Конструирование громкоговорителей со сглаженными частотными характеристиками», Москва, изд. Энергия, 1978

2. «Ещё о расчёте и изготовлении громкоговорителя», ж. Радио, 1984, №10

3. «Настройка фазоинверторов», ж. Радио, 1986, №8

Теперь перенесём теорию на практику – так нам ближе.

Как измерить резонансную частоту динамика в ящике? Как известно, на резонансной частоте, «модуль полного электрического сопротивления» (Impedance) звуковой катушки возрастает. Грубо говоря – сопротивление растёт. Если для постоянного тока оно составляет, например, 4 Ома, то на резонансной частоте оно вырастет Ом до 20 - 60. Как это измерить?

Для этого, последовательно с динамиком нужно включить резистор номиналом на порядок выше собственного сопротивления динамика. Нам подойдёт резистор номиналом 100 – 1000 Ом. Измеряя напряжение на этом резисторе, мы можем оценивать «модуль полного электрического сопротивления» звуковой катушки динамика. На частотах, где сопротивление динамика высокое – напряжение на резисторе будет минимальным, и наоборот. Так, а чем измерить?

Измерение импеданса динамика

Абсолютные значения нам не важны, нам нужно лишь найти максимум сопротивления (минимум напряжения на резисторе), частоты довольно низкие, поэтому пользоваться можно обычным тестером (мультиметром) в режиме измерения переменного напряжения. А откуда взять источник звуковых частот?

Конечно, в качестве источника лучше использовать генератор звуковых частот… Но оставим это профессионалам. Нам же «никто не запрещает» создать компакт-диск с записанным рядом звуковых частот, созданный в какой-либо компьютерной программе, например, CoolEdit или Adobe Audition. Даже я, имея измерительные приборы дома, создал CD на 99 треков, по несколько секунд каждый, с рядом частот от 21 до 119 Гц, с шагом 1 Гц. Очень удобно! Вставил в магнитолу, прыгаешь по трекам – меняешь частоту. Частота равна номеру трека + 20. Очень просто!

Процесс измерения резонансной частоты динамика в ящике выглядит следующим образом: «затыкаем» отверстие фазоинвертора (кусок фанеры и пластилин) включаем CD на воспроизведение, устанавливаем приемлемую громкость, и, не меняя её, «прыгаем» по трекам и находим трек, на котором напряжение на резисторе минимально. Всё – частота нам известна.

Кстати, параллельно, измеряя резонансную частоту динамика в ящике, мы можем подобрать оптимальное количество наполнителя для ящика! Постепенно добавляя количество наполнителя, смотрим изменение резонансной частоты. Находим то оптимальное количество, при котором резонансная частота минимальна.

Зная значение «резонансной частоты динамика в ящике с заполнителем» легко найти оптимальную резонансную частоту фазоинвертора. Просто умножьте её на 0,63. Например, получили резонансную частоту динамика в ящике 62 Гц – следовательно, оптимальная частота резонанса фазоинвертора будет около 39 Гц.

Теперь «открываем» отверстие фазоинвертора, и, изменяя длину трубы (тоннеля) или её сечение, настраиваем фазоинвертор на требуемую частоту. Как это сделать?

Да с помощью того же резистора, тестера и CD! Только нужно помнить, что на частоте резонанса фазоинвертора, наоборот, «модуль полного электрического сопротивления» катушки динамика падает до минимума. Поэтому, искать нам нужно не минимум напряжения на резисторе, а, наоборот максимум – первый максимум, находящийся ниже частоты резонанса динамика в ящике.

Естественно, частота настройки фазоинвертора будет отличаться от требуемой. И поверьте – очень сильно… Обычно, в сторону низких частот (недокомпенсация). Для увеличения частоты настройки фазоинвертора необходимо укорачивать тоннель, либо уменьшать площадь его поперечного сечения. Делать это нужно постепенно, по полсантиметра…

Примерно так будет выглядеть в области нижних частот модуль полного электрического сопротивления динамика в ящике с оптимально настроенным фазоинвертором:

Вот, и вся методика. Очень простая, и в то же время, дающая довольно точный результат.

Сабвуфер — это отдельно созданная акустическая система, которая предназначена для воспроизведения частот в звуковом диапазоне 20-120Гц. Сабвуфер воспроизводит низкие частоты, а основная только средние и высокие. Для человеческого слуха остается нераспознанным направление звука низкой частоты, поэтому сабвуфер можно устанавливать в любом месте. Изготовить сабвуфер своими руками не сложно и начинать нужно с покупки динамиков.

Выбор динамиков и сопротивления

Обычно используют динамики размеров:

  • Динамики на 6 дюймов – используются в качестве дополнительного источника мид-баса.
  • Динамики на 8 дюймов — используются при получении фронтальных басов.
  • Динамики на 10 дюймов — качественно звучат в 15 – 20 литровом корпусе «Закрытый Ящик», получается компактный сабвуфер с неплохим звуковым давлением.
  • Динамики на 12 дюймов – оптимальный вариант, хороши для сабвуфера объемом 25 – 35 литров.
  • Динамики на 15 дюймов — используют, как правило, на соревнованиях по SPL, так как 60 – 90 литровый сабвуфер вместит не каждый автомобиль.

Основной принцип разницы сопротивлений в звуковой катушке: чем меньше сопротивление нагрузки у усилителя,тем выше мощность.

Использование в нагрузке 1 — 2 Ом приводит к потере качества звучания.

Исходя из этого, рекомендуется выбирать 2-4 Ома. Среди специалистов и любителей нет пока единого мнения по поводу мощности динамиков. Но можно точно сказать, что динамик следует выбирать более мощный, чем максимальная мощность усилителя. Ни одна система не рассчитана на долгую работу на максимальной громкости: это приводит к росту нелинейных искажений и сильному снижению качества звука. Поэтому рекомендуется придерживаться баланса.

Параметры динамика

Теперь время создавать самодельный сабвуфер и его виртуальный образ. Дальнейшее проектирование ящика будет проводиться программой WinISD 0.44 и потребует некоторых характеристик динамика, а именно параметров Тиля-Смолла:

  • Qts -добротность динамика;
  • Fs - частота резонанса для открытого пространства;
  • Vas - эквивалентный объем.

Параметр Fs проблем не вызывает. Для ГДН35 Fs будет 38 Гц, для ГДН50 - 40 Гц, а для ГДН75 равен 25-35 Гц. Импортный динамик, где еще и фирменный, имеет параметры, которые легко найти в базе данных WinISD 0.44.

Qts - наиболее важен при расчете ящика. Этот параметр определяет отношение передаточной функции динамика частоты Fs к передаточной функции на тех частотах, амплитудно-частотная характеристика которых (АЧХ) горизонтальна. Другими словами на частотах выше Fs. Qts описывает эффективность динамика на резонансной частоте. Проблема в том, что низкочастотный динамик стандарта ГДН выпускается в разных местах. И параметры у разных производителей сильно отличаются.

Во время расчета ящика нужно взять во внимание все вероятные значения Qts и добавить отходные варианты.

В большинстве источников указаны следующие параметры:

  • 35ГДН-1-8 Qts = 0,4;
  • 35ГДН-1-4 Qts = 1±0,5;
  • 50ГДН-42Д Qts = 1±0,5;
  • 75ГДН-1-4 Qts = 0,2-0,5.

Vas - не особо важный для расчетов параметр, его значение можно считать равным:

  • ГДН35 — 40-50 л.;
  • ГДН50 - 90 л.;
  • ГДН75 - 80 л.

Видеопример сборки сабвуфера:

Последние значения

Программа WinISD 0.44 для проектирования ящика затребует еще некоторые параметры:

  • Z - сопротивление, оно указано в маркировке динамика, ГДН35-1-4 Z=4 Ом, ГДН75-1-8 Z=8 Ом и далее по списку;
  • Ре - предельная шумовая мощность: ГДН35 Ре = 35 Вт, ГДН50 Ре = 50 Вт, остальное в справочной литературе.
  • Qms - механическая добротность, ГДН35 - 5,8, ГДН75 - 2,38…
  • Qes - электрическая добротность, ГДН35 - 0,44; ГДН75 - 0,31…
  • dia - диаметр диффузора.

Остальные параметры не столь важны, и их в программе можно не указывать.

Проектирование ящика

Дальнейшее изготовление сабвуфера своими руками требует определиться с выбором типа ящика. Программа позволяет спроектировать четыре вида ящиков:

  1. ЗЯ - или закрытый ящик. Простой в проектировании и изготовлении, но имеет минимальный КПД. К тому же представляет некоторую трудность абсолютная герметизация ящика.
  2. ФИ - фазоинвертор. Несколько более сложный для расчета, но выдает более высокий КПД.
  3. – 4. БП4 и БП6 - бандпас 4-го и, соответственно 6-го порядка. Наиболее сложный при проектировании и изготовлении, но имеют максимальный КПД на низких частотах, и глушит высокие.

Каждый вид имеет свои положительные и отрицательные черты.

В наибольшей степени выбор ящика зависит от выбранного динамика.

Какой ящик лучше всего подходит к динамику, подскажет программа.

Перед началом проектирования создадим новый динамик со своими параметрами в базе данных. Нажимаем New, затем выбираем Own drivers, затем New, загружаем свои параметры, затем OK, Close.

Затем создадим проект на базе созданного динамика. Повторяем туже процедуру несколько раз, используя разные виды ящиков.

Само проектирование состоит в изменении размера ящика и настройки частоты фазоинверторов. Реагирует программа на вносимые изменения и изменяет график звучания в зависимости от частоты. Чтобы настроить частоту фазоинвертора, изменяется длина и диаметр труб. Также на длину труб влияет ее диаметр, задаваемый в соответствующем поле. Нужно следить, чтобы длина труб не оказалась чрезмерно большой, и не стало красным поле Vent mach.

Идеальный график пересекает на частоте 25-35 Гц линию в -3 дБ, а затем проходит по линии в 0 дБ и спадает примерно на 150-200 Гц. В остальном проектирование будет заключаться в поиске оптимально допустимых отклонений.

Делаем корпус

Теперь подробнее о том. как сделать сабвуфер своими руками и . Форма корпуса сабвуфера изготавливается в виде слегка усеченной пирамиды, так как она наиболее универсальна. Задняя стенка будет иметь скос в 23 градуса, потому что большинство автомобилей со спинкой заднего сиденья, наклоненной именно под таким углом. После определения нужного объема рассчитываем и рисуем чертеж корпуса будущего сабвуфера.

Закрытый ящик

Передняя стенка будет из ДСП в 23 мм толщиной, а боковая — толщиной 20 мм. Выпилим стенки нужных размеров и в необходимом количестве, затем производим сборку корпуса.

Все соединения лучше сделать клеем и саморезами, которые вкручиваются с интервалом в 5 см.

Под них предварительно сверлим отверстия сверлом диаметром 3 мм, а под головки саморезов возьмем сверло на 10 мм.

Затем, на боковой стороне циркулем размечаем отверстие для акустического терминала. Отверстие вырезаем электролобзиком. Акустический терминал под высоким давлением может давать призвуки. Чтобы избежать этого, экранируем его с помощью небольшой коробочкой. Промазываем соединения клеем и прикручиваем саморезами. Рубанком срезаем выступающие части корпуса.

На передней стенке таким же способом размечаем и вырезаем отверстие для установки динамика. Чтобы , следует пропитать его мебельным нитролаком. Лак наносим еще и на переднюю панель, на внутренний торец. Для большей привлекательности внешнего вида можно оклеить снаружи карпетом. В качестве клея используется тот же нитролак. Соединяем сабвуферный динамик и акустический терминал и закрепляем их в корпусе.

Фазоинвертор

Данный тип более громоздкий, его сложнее рассчитывать и настраивать, однако самодельный сабвуфер имеет КПД и качество звучания значительно выше предыдущего варианта. Как и в предыдущем случае, расчеты параметров ведутся с помощью одной из программ.

Вырезаем по нужным размерам стенки и аккуратно скрепляем их друг с другом клеем и саморезами. Рекомендуется промазать швы изнутри силиконовым герметиком. Для шпаклевки используется автомобильная двухкомпонентная шпаклевку. Необходимо как можно тщательнее отшлифовать корпус.

Вырезаем отверстия для фазоинвертора, специальных ручек-карманов и розетки. Устанавливаем и проверяем надежность всех креплений. Можно обтянуть кожей корпус.

Существуют варианты ФИ щелевого типа. Основным отличием является уникальный щелочной инвертор. Из-за особой конструкции крепление лучше делать с помощью длинных шурупов, для герметизации используются жидкие гвозди или клей «Момент». Однако, наибольшая прочность и герметизация получается, если ткань применить и эпоксидную смолу. В остальном процесс изготовления и сборки схож с обычным фазоинвертором.

Бандпас 4-го порядка

Это для тех, кто имеет опыт в проведении расчетов и изготовлении.

Бандпас 4-го порядка достаточно сложно рассчитывать и легко ошибиться в размерах.

Однако, он выдает отличный звук и КПД. Кроме того, он имеет лучшую защиту от внешнего воздействия, так как динамик расположен полностью внутри корпуса.

Расчеты размеров корпуса ведутся с помощью той же компьютерной программы. Важно при этом правильно рассчитывать не только размеры корпуса целиком, но и каждую из камер в отдельности. При выпиливании всех деталей следует точно придерживаться размеров. Затем собираем конструкцию при помощи клея или герметика и саморезов.

После сбора снова промазываем тщательно швы тем же герметиком или жидкими гвоздями. Перегородку, с расположенным на ней динамиком делаем из 2 листов ДСП. Место соединения с динамиком промазываем герметиком или силиконом и плотно сжимаем саморезами.

Затем пропилить отверстие для клеммы и обклеить изнутри шумопоглощающим материалом. Можно использовать, к примеру, ватин. Клей следует наносить не на всю площадь, а небольшими штрихами, чтобы изолирующий материал не оказался статичен. Дополнительно можно закрепить его при помощи строительного степлера. Далее припаиваем провода к клемме и к динамику.

Теперь заканчиваем сборку задней камеры и полностью ее герметизируем. На нее тоже следует поместить ватин. После чего плотно закрепить саморезами и клеем. Лучшую герметичность дают жидкие гвозди и наклеенный поверх швов скотч.

Чтобы изготовить сабвуфера своими руками фазоинвертор, можно купить или, если нет в наличии нужного размера, сделать из пластиковой трубки самому. Можно использовать канализационную трубу диаметром 100мм. Фазоинвертор с двух частей имеет раструбы, на передней части большего диаметра.

Сделать раструб можно, если края трубы немного нагреть и, с помощью банки или тарелки, расширить.

В крышке пропиливаем лобзиком отверстие, помещаем карпет вместе с фазоинвертором, предварительно промазав соединения жидкими гвоздями. Обклеиваем с задней стороны крышку и фазоинвертор шумопоглащающим материалом, можно использовать тот же ватин. Собираем готовый сабвуфер и обклеиваем его снаружи карпетом.

Бандпас 6-го порядка

Наиболее сложный по расчетам и сборке сабвуфер. Требуется основательная подготовительная работа с расчетами. Сравним с БП 4, но диапазон частот выдает гораздо больший. Правильно рассчитывать КПД и мощность этого сабвуфера сложно даже при помощи программ имитации. Обычно все параметры подбираются по наитию, исходя из личных предпочтений.

Устройство корпуса сложнее, чем в других сабвуферах, поэтому, для придания дополнительной прочности соединениям, их выполняют с помощью деревянных брусков, которые закрепляются саморезами. Все составляющие детали вырезаем строго по размерам. В перегородке, предназначенной для динамической головки, отметить циркулем и вырезать отверстие, разметить и просверлить отверстия под крепление динамика. Далее, по периметру крепим брусок. Затем одну из боковых стенок сабвуфера соединяем с днищем и устанавливаем перегородку под динамик.

Вторая боковая стенка сабвуфера крепится вслед за этим к перегородке и днищу. После этого бруски крепятся по периметру обеих камер. Вторая боковая стенка корпуса также крепится к днищу и перегородке. Затем прикрепляются бруски по периметру камер. Далее вырезаются 2 отверстия для фазоинверторов, и собирается сабвуфер. Делается это по технологии, аналогичной БП 4. Но дополнительным материалом шумоизоляции используется вата. Ее располагают между ватином и внутренней поверхностью корпуса сабвуфера. В качестве дополнительной отделки сабвуфер можно покрасить.

Самодельный сабвуфер стелс

Такой сабвуфер малозаметен и не занимает много места в багажнике. Вследствие этого его удобно использовать в автомобиле.

Обычно его устанавливают в багажнике автомобиля за аркой заднего крыла.

Хороший динамик требует ящик объемом до 18 литров, а иногда и более. Можно вынести немного переднюю панель корпуса в багажник, или, подрезав пол в багажнике, занять нишу, предназначенную для запасного колеса.

Устанавливая стелс, следует выдвинуть немного переднюю панель и аккуратно соединить ее со штатной обшивкой багажника. Вырезать обшивку по линии примыкания усилителей и сабвуфера. Работу с формовкой стеклопластика начинают с маскировки поверхности в местах контакта с полиэфирной смолой. Из гофрокартона делают форму, склеивают куски малярным скотчем. Собирают металлический каркас для усилителей, ориентируясь на край из стеклопластика. После этого примеряем оборудование.

Также из стеклопластика делаем панель облицовки для усилителей, уже на установленном каркасе. Для этого закрываем все промежутки между листами МДФ полиэтиленом и скотчем. После монтируем все саморезами на коробке корпуса. Гофрокартон используем как опалубку, чтобы устранить зазоры в корпусе сабвуфера. Между деталями необходимо набрать ту же толщину пластика, что и на остальных изделиях. Стеклопластиком и шпаклевкой добавляем внешнему виду корпуса более привлекательный вид. Устанавливаем сабвуфер в крыло автомобиля и можно удалять неровности полиэфирной шпаклевкой и выравнивать с помощью наждачной бумаги. Корпус обклеиваем карпетом и прикрепляем динамик.

Установка подсветки сабвуфера

Для подсветки используют светодиоды или оформляют светодиодной лентой. Светодиоды имеют 2 контакта, Анодный (А) и Катодный (К). Чтобы подключить светодиод правильно, и он работал, нужно присоединить контакты: А подключается к «плюсу» на источнике питания, К – к «минусу». Именно к А припаиваются резисторы, сопротивление которых рассчитывают по формуле закона ОМА.

Исходить следует из того, что рабочим напряжением светодиода является Uсв=3В, рабочим током Iсв=10мА=0.01А. Припаивают резисторы к контакту А каждого в отдельности светодиода. Так же нужно заранее решить, как закрепить светодиоды внутри сабвуфера. Наиболее удачно расположить их так, чтобы они держались крепко вместе.

Когда в качестве подсветки используется светодиодная лента, процесс закрепления диодов заменен конструкцией ленты. В ней светодиоды уже установлены и тщательно закреплены. Прикреплять светодиоды на внутреннюю поверхность сабвуфера можно при помощи двухстороннего скотча.

Работа со светодиодной лентой намного проще. Она позволяет создавать более яркие дизайнерские решения и интересные подсветки. К примеру, диодное кольцо, окружающее динамик. Рекомендуется использовать ленту, яркость и цвет которой выбран на собственный вкус.

Еще одно – использовать эквалайзер на заднем стекле автомобиля. Неоновый эквалайзер, реагирующий на пиковые амплитуды, выдаваемые сабвуфером, заставляет прыгать световые столбики. Это красиво и оригинальное решение светового оформления установленного сабвуфера.

Любой владелец автомобиля делает , руководствуясь только собственным вкусом. Любые советы специалистов всегда носят лишь рекомендательный характер. Тоже относится и к советам по изготовлению сабвуферов своими руками и их установки. Посетители нашего сайта могут в комментариях оставить свое мнение об изложенных в статье методах или описать свои собственные. Будем рады узнать ваше мнение.

  • Новости
  • Практикум

Генпрокуратура начала проверку автоюристов

Как утверждают в Генпрокуратуре, в России резко возросло количество судебных разбирательств, которые ведут «недобросовестные автоюристы», которые работают «не для защиты прав граждан, а для извлечения сверхприбылей». Как сообщают «Ведомости», информацию об этом ведомство направило в правоохранительные органы, ЦБ и Российский союз автостраховщиков. В Генпрокуратуре поясняют, что посредники пользуются отсутствием должной осмотрительности...

Владельцы кроссовера Tesla пожаловались на качество сборки

По словам автомобилистов, проблемы возникают с открытием дверей и стеклоподъемниками. Об этом в своём материале сообщает The Wall Street Journal. Стоимость Tesla Model X составляет около 138 000 долларов, но, если верить первым владельцам, качество кроссовера оставляет желать лучшего. К примеру, сразу у нескольких владельцев заклинили открывающиеся вверх...

Парковку в Москве можно будет оплатить картой Тройка

Пластиковые карты «Тройка», использующиеся для оплаты общественного транспорта, этим летом получат полезную для автомобилистов функцию. С их помощью можно будет оплатить стоянку в зоне платной парковки. Для этого паркоматы оборудуют специальным модулем для связи с центром обработки транспортных транзакций Московского метрополитена. Система сможет проверять, достаточно ли средств на балансе...

О пробках в Москве будут предупреждать за неделю

На такую меру специалисты центра пошли из-за работ в центре Москвы по программе «Моя улица», сообщает Официальный портал Мэра и правительства столицы. В ЦОДД уже сейчас анализируют автомобильные потоки в ЦАО. На данный момент на дорогах в центре бывают затруднения, в том числе на Тверской улице, Бульварном и Садовом кольце и Новом Арбате. В пресс-службе ведомства...

Отзыв Volkswagen Touareg добрался до России

Как сказано в официальном сообщении Росстандарта, причиной отзыва послужила вероятность ослабления фиксации стопорного кольца на опорном кронштейне педального механизма. Ранее компания Volkswagen объявила об отзыве 391 тысячи «Туарегов» по всему миру по той же причине. Как поясняет Росстандарт, в рамках отзывной кампании в России на всех автомобилях будет...

Владельцы Mercedes забудут, что такое проблемы с парковкой

По словам Цетше, которые приводит Autocar, в ближайшем будущем автомобили станут не просто транспортными средствами, а персональными помощниками, которые здорово упросят жизнь людям, перестав провоцировать стрессы. В частности, гендиректор Daimler заявил, что вскоре на автомобилях Mercedes появятся специальные датчики, которые «будут отслеживать параметры организма пассажиров и корректировать ситуацию...

Названа средняя цена нового автомобиля в России

Если в 2006 году средневзвешенная цена машины составляла примерно 450 тыс. рублей, то в 2016 - уже 1,36 млн рублей. Такие данные приводит аналитическое агентство «Автостат», изучившее ситуацию на рынке. Как и 10 лет назад, самыми дорогими на российском рынке остаются иномарки. Сейчас средняя цена нового автомобиля...

Mercedes выпустит мини-Гелендеваген: новые подробности

Новая модель, призванная стать альтернативой изящному Mercedes-Benz GLA, получит брутальную внешность в стилистике «Гелендевагена» - Mercedes-Benz G-класса. Немецкому изданию Auto Bild удалось разузнать новые подробности об этой модели. Итак, если верить инсайдерской информации, то Mercedes-Benz GLB будет отличаться угловатым дизайном. С другой стороны, полного...

Фото дня: гигантская утка против водителей

Путь автомобилистам на одной из местных автотрасс преграждала… огромная резиновая утка! Фотографии утки моментально разошлись по соцсетям, где у них нашлось немало поклонников. Как сообщает The Daily Mail, гигантская резиновая утка принадлежала одному из местных автомобильных дилеров. Судя по всему, на дорогу надувную фигуру снес...

Закономерным финалом саги о фазоинверторе будут практические аспекты его воплощения в жизнь. Ключевым элементом здесь становится именно труба, она же - тоннель, она же в результате рабской транслитерации с английского - порт. Именно она, труба, позволит реализовать на практике два главных параметра, определяющие акустический облик задуманного фазоинвертора: объём корпуса и частота его настройки. Эти две величины, одна в литрах, вторая - в герцах, становятся результатом либо самостоятельного расчёта, либо следования ранее сделанным калькуляциям. Их источником могут быть изготовители динамика, наши тесты или же советы специалистов, основанные на их практике. Во всех трёх случаях бывает, что даются готовые размеры тоннеля, обеспечивающие настройку известного объёма на нужную частоту, но, во-первых, не каждый раз, а во-вторых, слепое копирование не всегда возможно и всегда непохвально. Так что более общей и гораздо более продуктивной будет такая постановка задачи: известны объём и частота, а вопрос об их физической, в материале, реализации станем решать самодеятельно. Часть истории будет организована по принципу вопросов и ответов: номенклатура вопросов известна, в редакционной почте они повторяются с регулярностью, дающей повод для статистических выкладок, которые так любит наш тестовый департамент. Не стану отнимать у них любимую игрушку, у нас - свои. Итак, что вначале, рассчитываем тоннель или покупаем трубу, которой этим тоннелем предстоит стать? По идее надо вначале купить - трубы бывают не любого диаметра, а из некоторого ряда значений, если брать готовые, а не накручивать самому из бумаги на клею, как пионер из кружка юного космонавта. Но начать придётся всё же с хотя бы грубой прикидки, и дело здесь в том, что...

Толщина имеет значение

Если тоннель действительно труба (есть ведь и варианты), какой она должна быть в диаметре? Самый общий и самый грубый ответ: чем больше, тем лучше. Совет действительно радикален и может вызвать протестную реакцию: а если я возьму и сделаю тоннель диаметром вдвое больше динамика? Не возьмете и не сделаете, как бы ни старались, об этом больше ста лет назад позаботился некто Герман Гельмгольц, резонатором имени которого фазоинвертор и является, а позже - создатели автомобилей, сделавшие их по габаритам меньше существовавших в то время паровозов. Итак, по порядку, почему больше и почему что-то этот процесс остановит.

Во время работы вблизи частоты настройки, где, собственно, и выполняет свои функции тоннель фазоинвертора, добавляя от себя к звуковым волнам, порождаемым колебаниями диффузора, внутри тоннеля движется воздух. Движется колебательно, туда-сюда. Объём движущегося воздуха - точно такой же, какой во время каждого колебания приводится в движение диффузором, он равен произведению площади диффузора на его ход. Для тоннеля этот объём - произведение площади сечения на ход воздуха внутри тоннеля. Площадь сечения реально всегда меньше площади диффузора (если кто ещё не отказался от угрозы сделать такой же, а то и больше, скоро никуда не денутся и откажутся), и, чтобы переместить такой же объём, воздуху надо двигаться быстрее, скорость в тоннеле с уменьшением диаметра возрастает пропорционально уменьшению площади его сечения. Чем это плохо? Всем сразу. Прежде всего тем, что модель резонатора Гельмгольца, на которой всё основано, предполагает, что потери энергии на трение воздуха о стенки тоннеля отсутствует. Это, разумеется, идеальный случай, но чем дальше мы от него отойдём, тем меньше работа фазоинвертора будет походить на то, чего мы от него ожидаем. А потери на трение в тоннеле тем выше, чем больше скорость воздуха внутри. Теоретически формула, да и несложная программа, на ней основанная, этих потерь не учитывает и безропотно выдаст вам расчётную длину тоннеля при диаметре хоть в палец, но работать такой фазоинвертор не будет, всё умрёт в завихрениях воздуха, пытающегося стремительно летать по тесному тоннелю взад-вперёд. Текст когда-то виденного мной агитационного плаката ГАИ «Скорость это смерть» к движению воздуха в тоннеле подходит безусловно, если смерть отнести к эффективности фазоинвертора.

Впрочем, намного раньше, чем фазик погибнет как средство звуковоспроизведения, он станет источником звуков, для которых не предназначен, вихри, возникающие при излишне высокой скорости движения воздуха, создадут струйные шумы, нарушающие гармонию басовых звуков самым бессовестным и неэстетичным образом.

Что следует принять за минимальное значение площади сечения тоннеля? В разных источниках вы найдёте разные рекомендации, далеко не все из них авторами были когда-либо опробованы хотя бы путём вычислительного эксперимента, о других уж не говорим. Как правило, в такие рекомендации закладываются две величины: диаметр диффузора и максимальная величина его хода, то самое Xmax. Это разумно и логично, но в полной мере относится лишь к работе сабвуфера на предельном режиме, когда о качестве звучания говорить уже немного поздно. Основываясь на многочисленных практических наблюдениях, можно взять на вооружение куда более простое правило, оно небезупречно и не совсем универсально, но работает: для 8-дюймовой головки тоннель должен быть не меньше 5 см в диаметре, для 10-дюймовой -

7 см, для 12-ти и больше - 10 см. Можно ли больше? Даже нужно, но вот именно сейчас нас кое-что остановит. А именно - длина тоннеля. Дело в том, что...

Длина имеет значение

Как и было сказано, её скомандует великий Герман фон Гельмгольц. Вот он, у доски в Гейдельбергском университете, а на доске - та самая формула. Ну ладно, в этот раз её написал я, но придумал - он и написал бы точно так же. Эта немудрёная, поскольку выведена для идеального случая, зависимость показывает, какова будет частота резонанса некоей полости (нам привычнее ящик, хотя Герман фон делал эдакие пузыри с трубами-хвостиками) в зависимости от объёма V, длины L и площади сечения хвостика. Обратите внимание: параметров динамика здесь нет, и было бы странно, если бы они были. В любом случае полезно запомнить и никогда не поддаваться на провокации: настройка фазоинвертора полностью и исчерпывающе определяется размерами ящика и характеристиками тоннеля, соединяющего этот ящик с окружающей средой. Помимо этого в формулу входят только скорость звука в атмосфере планеты Земля, обозначенная «с», и число «пи», не зависящее даже от планеты.

Для практических целей, а именно - вычисления длины тоннеля по известным данным, формулу легко преобразовать, вспомнив родную школу, а константы подставить в виде чисел. Это делали многие. Многие же публиковали результаты этого волнующего процесса, и автору немного удивительно, как можно было зрелищно обделаться при операции с тремя-четырьмя числами. В общем, треть опубликованных на бумаге и в Сети преобразованных формул непостижимым образом являются ахинеей. Правильная приводится здесь, если подставлять величины в показанных чёрным единицах.

Эта же формула плюс некоторые поправки заложена и во все известные программы по расчёту фазоинверторов, но прямо сейчас формула для нас удобнее, всё на виду. Смотрите: что будет, если вместо минималистского тоннеля поставить другой, попросторнее (и потому получше)? Потребная длина возрастёт пропорционально квадрату диаметра (или пропорционально площади, но ведь мы трубу-то собрались по диаметру покупать, по-другому не продают). Перешли от 5-сантиметровой трубы к 7-сантиметровой, это к примеру, длина при той же настройке понадобится вдвое больше. Перешли на 10 см - вчетверо. Беда? Пока - полбеды. Дело в том, что...

Калибр имеет значение

Беда сейчас будет. Ещё раз глядим на формулу, на этот раз - в знаменатель, фокусируйте зрение. При всех прочих равных длина тоннеля будет тем больше, чем меньше объём ящика. Если для того, чтобы настроить на 30 Гц 100-литровый объём, имея в распоряжении 100-миллиметровую сантехническую трубу, надо открыжить и вклеить в ящик отрезок говнопровода протяжённостью 25 сантиметров, то при объёме ящика 50 л это будет полметра (что уже не меньше, чем полбеды), и при довольно распространённых 25 л тоннель такой толщины должен будет иметь метровую длину. Это уже беда, без вариантов.

В наших, практических условиях объём ящика в первую очередь определяется параметрами динамика, и в силу причин, читателям этой серии уже хорошо известных, для головок калибра 8 дюймов оптимальный объём редко превышает 20 л, для «десяток» - 30 - 40, лишь когда дело доходит до 12-дюймового калибра, мы начинаем иметь дело с объёмами порядка 50 - 60 л, и то не всегда.

Вот и получается какой-то парад суверенитетов: частота настройки ФИ определяется тем басом, который мы от него хотим получить, будь он на «восьмёрке» или на «пятнашке» - не важно. А частота настройки ящика опять не зависит от динамика, чем меньше объём, тем длиннее подавай тоннель. Итог парада: как мы неоднократно замечали в тестах малокалиберных сабвуферов, желательный и многообещающий вариант оформления в ФИ физически невозможно (или затруднительно) реализовать. Даже если не жалко места в багажнике, нельзя объём ящика ФИ делать больше оптимального, а оптимальный нередко оказывается настолько мал, что настроить его на инвариантную к прочим факторам частоту 30 - 40 Гц немыслимо. Вот пример из недавнего теста 10-дюймовых сабвуферных головок («А3» №11/2006): если взять за аксиому диаметр трубы 7 см, то для того, чтобы сделать фазоинвертор на головке Boston, понадобился бы её кусок длиной 50 см, для Rainbow - 70 см, А для Rockford Fosgate и Lightning Audio - около метра. Сравните с рекомендациями в тесте этого номера, относящимися к 15-дюймовым головкам: ни у одной таких проблем не отмечено. Почему? Не из-за динамика, как такового, а из-за исходного объёма, выбранного по параметрам динамика. Что делать? Встречать беду во всеоружии. Оружие нам выковали поколения специалистов (и не только). Знаете, в чём тут дело?

Форма имеет значение

Вы едва ли могли не заметить: я очень люблю копаться в патентах, поскольку считаю, пусть дорога от изобретения к реальной жизни не столь уж коротка, патент - отражение мысли в виде вектора, то есть - с учётом направления. Большинство новаций, предложенных (и неуклонно предлагаемых) неутомимыми умами в отношении фазоинвертора, сконцентрировано на борьбе с двумя мешающими факторами: длина тоннеля, когда его сечение велико, и струйные шумы, когда его сечение, стремясь сократить длину, попытались уменьшить. Первое, простейшее решение, о допустимости которого нас спрашивают в редакционной почте раз по пять в месяц: можно ли тоннель поместить не внутрь ящика, а снаружи? Вот ответ, окончательный, фактический и настоящий, как бумага на квартиру профессора Преображенского: можно. Хоть частично, хоть целиком, внутрь ящика тоннель запихнули исключительно из эстетических соображений, у фон Гельмгольца он торчал снаружи, и ничего, он это пережил. Да и современность наша даёт примеры: вот, скажем, ветераны car audio не могут не помнить (многие, честно говоря, не могут забыть) «басовые трубы» фирмы SAS Bazooka. Они ведь начались с патента на сабвуфер, который удобно поместить за сиденьем грузовика - любимого транспорта американцев. Для этого изобретатель протянул трубу фазоинвертора вдоль корпуса снаружи, заодно уж придав её распластанную по поверхности цилиндрического корпуса форму. Это - один пример, есть другой: некоторые фирмы, выпускающие встроенные сабвуферы для домашних кинотеатров, выводят наружу трубу-тоннель полосового сабвуфера-бандпасса. Тип сабвуфера в данном случае значения не имеет: это тот же резонатор имени сами знаете кого. Ещё одно решение тоже, судя по письмам, ищут, но опасаются. «Можно ли гнуть тоннель?» Ответ - в стиле Филиппа Филипповича и очевиден. Иначе не выпускали бы сразу несколько компаний (DLS, JL Audio, Autoleads, etc. etc.) гибкие трубы специально для этой цели. А в области патентной документации есть даже интересная подсказка, как можно эту задачу решить не без изящества и материальной экономии: была в своё время предложена конструкция модельного тоннеля, который бы собирался из типовых элементов в любой желаемой форме, иллюстрация поведает об остальном. От себя добавлю: большая часть изображённых в патенте деталей трогательно напоминает номенклатуру элементов канализационных сетей местного значения, что и является практическим рецептом внедрения интеллектуального эксцесса американского изобретателя.

Борясь с неуместной длиной тоннеля, часто идут по пути строительства так называемых «щелевых портов», их достоинство - в конструктивной интеграции с корпусом, что позволяет, при известном воображении, сделать тоннель довольно протяжённым, на прилагаемой схеме - сразу несколько вариантов, которым вопрос, разумеется, далеко не исчерпывается (три верхних эскиза принадлежат перу известного хай-эндщика Александра Клячина, остальное было делом техники).

Недостаток же щелей - в трудности подгонки длины, это не сантехнический ПВХ - махнул пилой, и дело в шляпе. Но есть решения и здесь: не так давно один из героев рубрики «Своя игра» пермяк Александр Султанбеков (не грех лишний раз напомнить стране имена её героев) продемонстрировал на практике, как можно настраивать щелевой порт, изменяя его сечение при неизменной длине, он это делал, укладывая внутрь фанерные проставки, как показано на фото где-то поблизости, поищите.

В сворачивании тоннеля фазоинвертора некоторые светлые умы дошли до крайностей: один светлый предложил, например, свернуть тоннель в виде спирали вокруг цилиндрического корпуса громкоговорителя, другой на хитрую формулу Гельмгольца ответил тоннелем-винтом, такая концепция нам здесь, в России, знакома...

Но вообще-то все эти решения (даже с винтом) - лобовые, здесь тоннель неизменной длины просто приделывается или складывается так, чтобы не мешал. Известны (и даже продаются в товарных количествах) реализации другого принципа. Здесь дело вот в чём.

Сечение имеет значение

Не площадь, как таковая, а характер её изменения по длине тоннеля. До сих пор мы, ведомые учением фон Гельмгольца в его самой простой, школьной форме, считали непременным, что поперечное сечение тоннеля постоянно. А нашлись люди, которые это условие нарушили и даже нажили на этом денег.

Опытные читатели помнят, например, статью нашего итальянского коллеги профессора Матарацци, где он предлагает эффективные решения по сокращению длины тоннеля путём придания ему конической или дважды конической, как песочные часы, формы. В «А3» №10/2001 расчёты по программам профессора приведены в виде таблиц, а сами программы сеньор недавно по нашей просьбе нашёл и прислал. Ко времени выхода этого номера из печати мы их выложим на сайт в разделе «Приложения». Правда, исходный код рассеянный профессор потерял безвозвратно, так что программки остаются на итальянском, если кто знает, как перевести, не имея кода, примем помощь с признательностью.

А пока отметим: в своих изысканиях профессор и не первый, и не единственный. На этом направлении происходили даже целые трагедии. Давние читатели журнала, возможно, помнят заметку в «А3» №2/2003 о судебном иске по поводу тоннеля фазоинвертора, не столь давним напомню: корпорация Bose усмотрела, что другая корпорация, JBL, использовав в своих колонках тоннели фазоинвертора с криволинейной образующей, названные Linear-A, тяжко посягнула на интеллектуальную собственность Bose Corp. В доказательство был приведен патент США, где упоминалось, в числе прочего, что неплохо было бы тоннель сделать с эллиптической образующей, он тогда будет и короче, и тише с точки зрения струйных шумов. Напрасно JBL пыталась втолковать суду, что у Bose эллипс, а у JBL - экспонента. Суд пояснил, что эллипсы-шмеллипсы - дело десятое, а колонок продали много, бухгалтерия Bose посчитала: нажива JBL составила 5676718 долларов и 32 цента, что и предлагалось внести в кассу обиженной стороны. Занесли как миленькие, включая медяки, а во всех колонках тоннели поменялись на другие, FreeFlow, типа - улучшенная модель. Вот как бывает...

Уход от цилиндра как формы тоннеля предлагали очень и очень многие. Кто - в стиле Матарацци с вариациями, кто - в скромном, локальном масштабе, ограничиваясь приданием криволинейных обводов концам цилиндрического тоннеля с целью снижения струйных шумов от завихрений. Наиболее же радикальное средство борьбы и с длиной, и с шумами не только придумал, но и эксклюзивно пользуется им уже не один год Мэттью Полк, основатель компании своего имени. Суть устройства под названием PowerPort такова: часть функций тоннеля берёт на себя одна или две, на каждом конце трубы, кольцевая щель между стенкой ящика и поставленным на строго рассчитанном расстоянии от неё «грибком», впрочем, на рисунке всё видно. Такими тоннелями снабжаются практически все домашние громкоговорители Polk Audio. И ежели только кто покусится, плакали его 32 цента плюс ещё кое-что. Для себя же, любимых, никто не запретит такую штуку попробовать, тем более что когда-то давно Полк выложил на свой корпоративный сайт таблицу в «Экселе», по которой можно всё рассчитать, я её тогда же с этого сайта попёр (получив на это позже, задним числом, благословение автора - я же не с целью наживы) и даже перевёл сопроводительные инструкции на великий и могучий, это всё лежит у нас на сайте.

A propos, и труды профессора Матарацци, и революционная разработка Мэттью Полка напоминают нам вот о чём: гимназическая формула Гельмгольца, помимо прочего, не учитывает очень существенный для практики эффект: в огромном большинстве случаев (практически - всегда) один из концов тоннеля прилегает к стенке корпуса сабвуфера, это касается как круглых труб, отпиленных заподлицо со стенкой, так и труб, снабжённых аэродинамической законцовкой, а в ещё большей степени - щелевых портов, прилепившихся к стенке. Близость стенки создаёт концевой эффект, напоминающий то, чего намеренно добивался автор PowerPort - виртуального удлинения тоннеля. Поэтому-то к формуле, непосредственно произведенной из трудов фон Гельмгольца современные прикладные спецы рекомендуют вводить поправку, чисто эмпирическую, но оттого не менее нужную, она выделена красным, чтобы было ясно, где классик XIX века, а где - практика XX.

А вообще-то, друзья дорогие, пора браться за дело, не век же в бумажках копаться. Дело-то как раз в этом...

К вопросу о толщине: проталкивая тот же объём воздуха через более тесный тоннель, его придётся разгонять до более высокой скорости. А «скорость - это смерть»

Гельмгольц написал бы свою формулу точно так же, просто в тот момент не было фотографа

Окончательная и фактическая формула, заменяющая компьютерную программу. Она правильная, проверили неоднократно. Смысл выделенного красным «хвостика» будет объяснен в тексте

Может ли тоннель находиться снаружи ящика? Да целая фирма на этом построила свой бизнес, патент на удобный для размещения сабвуфер был растиражирован стонями тысяч басовых труб SAS Bazooka. А производители встроенных сабвуферов для домашних театров вообще не парятся...

Можно ли тоннель оставить внутри, но согнуть как удобнее? Вот вам ответ

Экзотические, отчаянные решения: свернуть тоннель спиралью или винтом

Щелевой тоннель интегрирован с ящиком, от этого его можно сделать длиннее обычного, «вставного», подгонять длину, правда, гораздо труднее...

Значит, надо подгонять не длину, а сечение: вот как это делал один житель столицы Пермского края

Уход от цилиндрической формы тоннеля предлагался и для сокращения его длины, и в виде локальной «аэродинамической обработки», для снижения струйных шумов

Самое эффектное решение в этой области: PowerPort Мэттью Полка. Изобретение не осталось на бумаге, оно - составная часть почти всей акустики Polk Audio

Подготовлено по материалам журнала "Автозвук", февраль 2007 г. www.avtozvuk.com

Ну как, нашли подсказку, на которую я намекал в прошлом выпуске? Там было насчёт «баса народа»…

На службе народу

Ладно, раз не нашли, сейчас помогу. Весной 2006 года мы с вами общими усилиями (один я бы не справился) пришли к очень благоприятному для себя заключению: при правильном выборе динамика и верном расчёте объёма закрытый ящик может обеспечить в салоне автомобиля абсолютно, незыблемо ровную АЧХ. Ровную и простирающуюся в область низких частот настолько, насколько немыслимо этого достичь в домашнем аудио, ни за какие деньги. Всё, что для этого надо сделать - устроить так, чтобы АЧХ сабвуфера в открытом пространстве начала спадать примерно (или точно) там же, где начинается подъём на волшебной кривой передаточной функции салона. Двигая этой частотой вверх или вниз по оси частот, мы можем получить некоторый подъём на АЧХ или, наоборот, пострадать от некоторого спада по отношению к средним частотам, но в одном можно быть уверенным: уровень звукового давления, создаваемый в салоне машины сабвуфером в закрытом ящике ниже 50 - 60 Гц, не начнёт падать до самых низких, инфразвуковых частот, да и там это произойдёт не из-за него, а из-за нежёсткости и негерметичности кузова. Это было весной, и это, можно считать, были хорошие новости.

Зимой, а точнее - в прошлом номере, мы с той же неумолимостью пришли к выводу: сабвуфер-фазоинвертор ни при каких реально возможных обстоятельствах такой благодати во всей полосе низких частот обеспечить не может. Фазоинвертор придумали чёрт знает когда нарочно для расширения полосы воспроизводимых частот вниз, а у нас, в машине, это не актуально в силу той же самой передаточной функции. Это вроде бы новость плохая.

Однако тут же на реальном примере мы убедились: полосу частот в машине фазоинвертор не расширит, зато способен существенно увеличить уровень звукового давления при одной и той же подведенной к сабвуферу мощности. Опять хорошая новость. Итого: две хорошие на одну плохую, счёт в нашу пользу. Но как же всё-таки быть с врождённой неравномерностью АЧХ фазоинвертора? Вот про это и была подсказка, которую вы не нашли.

Чтобы не искать: вот результаты обобщения десятков реально построенных и успешно работающих аудиосистем. Верхний график - чего хотят чемпионы, нижний - что предпочитает просто любитель музыки в автомобиле. Во избежание недоразумений подчеркнём: во всех случаях речь идёт о серьёзных, порой очень недешёвых системах

Кто далёк от народа?

Тогда же, погожей весной 2006 года, мы прошерстили данные рубрики «Системы» на предмет выяснения: какую басовую АЧХ желает иметь народ в своём автомобиле, потратившись на установку руками профессионалов. И выяснили: есть два довольно непохожих типа баса. Один можно наблюдать (вернее - слышать) в машинах, получивших самые высокие оценки на соревнованиях самого высокого уровня. Вот именно так: самые и на самых. В таких машинах басовая частотная характеристика очень напоминает АЧХ дорогой (или очень дорогой) домашней акустики. Обобщённо: ровный, с минимальными отклонениями от горизонтали «стол» до самого низа. Если же взять статистику по обычным, для повседневного использования, автомобилям, там кривая будет существенно другая: с довольно явственно прорисованным подъёмом на басах, максимум которого приходится на 40 Гц.

Почему чемпионы оказались дальше от народа, чем мы ожидали? Да нет, они - из наших, просто на соревнованиях машину слушают на месте и, кроме специальных случаев, при заглушенном двигателе. Это, по существу, воспроизведение домашних условий в салоне, отсюда и уже отмеченное сходство. Но стоит запустить двигатель и куда-нибудь отправиться (а, говорят, автомобиль для этого и предназначен), требования к басам резко меняются, уровень низкочастотного шума в салоне даже дорогого автомобиля неожиданно высок, но воспринимается ухом совсем не так, как шумы на средних частотах. Кажется, что в машине тихо, но почему-то басовые звуки музыкального сопровождения поездки как будто затихают - так наш слух адаптируется к постоянно действующей низкочастотной помехе. Басы надо поднимать, и в этом случае не так страшно, если подняты они окажутся не все сразу, а только до какой-то частоты, в реальных фонограммах содержание информации ниже 30 Гц крайне невелико.

Отсюда и столь любимая в народе форма басовой АЧХ. Отсюда же - крайняя полезность для автомобильной акустики замечательного изобретения, сделанного в первой трети прошлого века.

Упрощённые до прямолинейности графики происходящего в салоне машины, когда туда помещают сабвуфер. Верхний вы уже видели: это - результат идеально аудиофильской настройки сабвуфера типа ЗЯ. Его АЧХ «на свободе» начинает спадать именно там и именно с таким наклоном, с каким её поднимает передаточная функция салона. Итог - неколебимая прямая и призовой кубок.

Смотрите, что пришло

Вновь повторим иллюстрацию к одному из прошлых выпусков: название серии это не только допускает, но и требует. Вот схема, лежащая в основе «рецепта чемпионов». Предельно упрощённая, но все упрощения мы оговорим. Если согласиться с тем, что на нижней граничной частоте АЧХ сабвуфера в закрытом ящике резко, изломом, начинает катиться вниз, а на этой же частоте передаточная функция заворачивает вверх, то результирующая характеристика будет по-чемпионски горизонтальной. Вы правы, природа не терпит изломов, реально кривые будут загибаться плавно, одна вниз, другая - вверх, но при выполнении некоторых условий (которые мы обсуждали) результат будет таким же: ровная АЧХ до неслышимых границ. Теперь с такими же условностями нарисуем, что произойдёт, если вместо закрытого ящика мы построим фазоинвертор. Для большей ясности давайте сначала его построим плохо и неправильно. Это значит: запомнив из материалов про «простые числа», сулящие небесные характеристики ЗЯ (№4/2006), что резонансная частота динамика в этом виде оформления должна выбираться близкой к частоте перегиба кривой передаточной функции, настроим на эту частоту и вновь сооружаемый ФИ. Это на практике означает настройку герц эдак на 60 - 70. Что произойдёт? А ничего хорошего, АЧХ фазоинвертора, как уже говорилось, ниже частоты настройки падает вдвое быстрее, чем у закрытого ящика, 24 дБ/окт. вместо 12. Передаточная функция салона про это ничего не знает и по-прежнему обеспечивает подъём АЧХ в присущем ей темпе: 12 дБ/окт. Результатом станет «дефицит бюджета», ниже частоты настройки результирующая АЧХ пойдёт вниз с наклоном 12 дБ/окт. Зачем надо было вертеть дыру в ящике, чтобы такое получить? И верно, незачем, но мы ведь нарочно начали с плохого фазоинвертора, чтобы лучше вышел хороший.

Второй график - пример неуместного переноса этого же подхода на фазоинвертор. Его собственная АЧХ спадает ниже частоты настройки с наклоном уже 24 дБ/окт., передаточная функция наполовину скомпенсирует только крутизну спада, но он начнётся с той же недопустимо высокой частоты.

Выбросим сделанное ранее (слава богу, мысленно) и построим другой ФИ, у которого частота настройки существенно ниже частоты перегиба передаточной функции. Теперь происходит следующее: начиная с некоторой частоты передаточная функция салона начинает поднимать звуковое давление внутри, ведь АЧХ сабвуфера в свободном пространстве пока горизонтальна. Когда же частота (мы идём сверху вниз, разумеется) достигнет частоты настройки, АЧХ самого сабвуфера пойдёт вниз с наклоном 24 дБ/окт., на 12 дБ/окт. её «выправит» передаточная функция, итог - падение отдачи ниже частоты настройки, как у закрытого ящика в комнате.

А теперь посмотрите, что происходит между этими двумя частотами: пока не началось падение АЧХ, фазоинвертор успел набрать изрядный запас звукового давления. То, что в нашей упрощённой схеме выглядит эдаким домиком, на самом деле реализуется в виде плавных кривых, в общем случае похожих именно на форму АЧХ «народного баса». Остаётся самая малость - реализовать это на практике, где прямых и ломаных нету…

Идеализация реальной настройки ФИ: его звёздный час приходится на диапазон между точкой перегиба кривой передаточной функции и частотой настройки. Чем шире разнесены эти две частоты, тем больше простора для басового «домика».

Основной принцип, вытекающий вовсе не из науки, а из самой приземлённой практики, вы уже можете вывести сами. Если большинство населения делает (или принимает сделанную для них) АЧХ сабвуфера в виде горба с центральной частотой около 40 Гц, то зачем нам идти против народа? Исходя из приведенной схемы, самым первым, даже нулевым приближением рецепта оптимального автомобильного (только автомобильного) фазоинвертора будет настройка его на частоту 40 плюс-минус 5 Гц. На передаточную функцию мы никак повлиять не можем, она определит, где начинается подъём АЧХ. А её спад, а следовательно, и максимум придутся по нашей модели на частоту настройки ФИ. И всё? Вновь «простые числа»? Увы, нет. Совсем простых чисел для фазоинвертора не придумано. Но кое-что упростить всё же можно.

Свобода в степени

Действительно, был ящик, стал ящик с тоннелем, почему нельзя и в этом случае обойтись простыми рецептами? Дело в числе переменных, определяющих характеристики фазоинвертора как колебательной системы. Если в случае закрытого ящика мы имели дело с системой с одной степенью свободы, то у ФИ этих степеней две. Численно разница невелика, но для того, чтобы представить, насколько сложнее при этом становятся повадки системы, воспользуемся такой иллюстрацией, вам предстоит либо представить себе не раз виденные предметы в определённом сочетании, либо, если нет иного занятия, взять и в самом деле построить несложную экспериментальную установку. Первая её часть - банальный маятник, да хоть груз на верёвке. Всё, что он умеет - качаться туда-сюда, движения его предсказуемы до неинтересности. У маятника степень свободы - одна, его состояние в любой момент времени исчерпывающим образом определяется углом отклонения от положения равновесия. Теперь замените верёвку резинкой. Степеней свободы, то есть не зависящих друг от друга координат, определяющих состояние такой, с позволения сказать, системы, стало две: угол качания и степень растяжения резинки. Отклоните теперь такой маятник в сторону, одновременно растянув резинку. Если вы правда не видели, что после этого начнётся, не пожалейте времени и галантереи и проведите опыт: вместо банального раскачивания груз будет выделывать в воздухе трудноописуемые и нелегко прогнозируемые кульбиты.

Примерно в той же мере поведение ФИ отличается от предсказуемого ЗЯ. У динамика по-прежнему три параметра, один из которых, эквивалентный объём, сейчас менее важен, потому что определяет масштабный фактор, а не процесс колебаний, а два других, резонансная частота и добротность, по-прежнему важны. Но у акустического оформления параметров стало вдвое больше: объём ящика и частота настройки тоннеля. В каком соотношении эти четыре величины должны находиться, чтобы мы не оказались разочарованы результатами? Серьёзные исследования работы фазоинвертора породили не одну диссертацию и множество классических научных статей, но у нас задача иная, поэтому попытаемся дать практические ориентиры, не вдаваясь в подробности, почему они именно таковы.

Ведь смотрите: считать ФИ всё равно предстоит с помощью компьютерной программы, причём с вероятностью 99% это будет BassBox или (что то же самое) JBL Speaker Shop, эти некогда коммерческие продукты сейчас расползлись по миру в таком количестве, что не найти очередную копию себе сможет только очень ленивый. Но печка, от которой танцевать, даже при наличии испытанного софта, всё же нужна.

Общее правило: чем просторнее корпус ФИ, тем выше (но тем и острее) будет горб акустического усиления

В достаточно просторных корпусах, которые, будь они закрытыми, приводили бы к низким значениям полной добротности динамика в оформлении, пик отдачи ложится на частоту настройки

В корпусах тесных, в том числе - оптимальных в роли ЗЯ для данного динамика, АЧХ имеет максимум выше частоты настройки, при совсем заниженном объёме характеристика приобретает двугорбую форму, а выгода от использования ФИ сходит на нет

Неспортивное ориентирование

Итак, ориентир первый, уже относительно понятный из сравнения практической, «целевой» формы АЧХ, полученной обобщением практики, и упрощённой картинки, иллюстрирующей происходящее в салоне. Если мы хотим, чтобы на АЧХ возник подъём с максимумом в районе 40 Гц, на этой частоте и должен начаться спад АЧХ сабвуфера в свободном пространстве (в комнате или на улице - всё равно, важно, что не в салоне). Эта частота в первом приближении - частота настройки тоннеля. Та же практика демонстрирует со всей очевидностью: во всех удачных аудиосистемах, где используется сабвуфер в фазоинверторном оформлении, частота настройки приходится на диапазон 30 - 40 Гц. В этом же коридоре находятся обычно значения частоты настройки фазоинверторов, рекомендуемых для своих сабвуферов изготовителями. За исключением особых случаев спортивного применения, мы сейчас не об этом. Глядя на условно-упрощённую диаграмму, вы можете сообразить, что при прочих равных чем ниже будет частота настройки ФИ, тем выше успеет забраться АЧХ в салоне, прежде чем начнёт падать с тем же наклоном. Это вы можете увидеть и по фактическим материалам: загляните в какой-либо из наших тестов корпусных сабвуферов и сравните частоту настройки тоннеля (для тех, у кого он есть) с положением максимума звукового давления, зафиксированного при измерениях в салоне.

Однако положение горба по частоте - одно, а высота его - другое. Как добиться желаемого плавного подъёма басов в разумно широкой полосе частот, чтобы АЧХ не стояла домиком, как одеяло у первогодка? Свои ориентиры есть и для этого. Общее правило: при прочих равных (мы всё время делаем эту оговорку, и понятно почему - из-за возросшего числа переменных) подъём АЧХ вблизи частоты настройки будет тем выше и острее, чем больше объём ящика ФИ. Как выбрать первое приближение объёма? Есть простой (наконец-то) рецепт, за которым, правда, стоят далеко не простые умозаключения классиков современной электроакустики. Возьмите такой объём, который, если бы он был закрытым ящиком, дал бы значение полной добротности головки в оформлении, равное примерно 0,55 - 0,6. Именно в силу этого оптимальный объём ФИ в подавляющем большинстве случаев больше, чем оптимальный ЗЯ для этого же динамика, ведь ЗЯ рассчитывается исходя из результирующей добротности 0,7, а то и выше.

При таком объёме (а здесь играет роль, разумеется, не столько абсолютное значение объёма, сколько его отношение к величине эквивалентного объёма динамика Vas) можно рассчитывать на корректную работу получившегося акустического оформления во-первых и на то, что максимум отдачи будет находиться вблизи частоты настройки - во вторых. Нужен более высокий, пусть и более «домиком», подъём АЧХ - увеличивайте объём. Нужен подъём ниже, но более плавный и в более широкой полосе частот - уменьшайте объём, только заранее будьте готовы к двум вещам: вместе со сглаживанием максимума он с уменьшением объёма будет стремиться переехать выше по частоте, и уже не будет строго соответствовать частоте настройки порта, а когда объём достигнет значения оптимального для этого динамика закрытого ящика, с очень большой вероятностью АЧХ приобретёт довольно неуклюжую седловидную форму, при этом акустическое усиление, тот самый горб, который мы пытаемся построить, в большинстве случаев сойдёт на нет.

Впрочем, прежде чем начать опыты с подбором (а по-другому не получается, с одного клика ФИ рассчитать не удавалось ещё никому) объёма и настройки, надо определиться с динамиком. Здесь нам будет необходимо, увы, разрушить одно заблуждение.

Вновь на арене EBP

Мы уже говорили об этой величине, сокращённое имя которой расшифровывается как Energy Bandwidth Product. Этой величиной, численно равной отношению частоты резонанса динамика к его полной добротности, мы уже пользовались при выборе динамика для ЗЯ. Но задолго до нас, уже который год ею призывают пользоваться для сортировки динамиков на предназначенные для закрытых ящиков и просящиеся в фазоинвертор. Принято считать, что, если эта величина меньше 50, динамик предназначен только для ЗЯ. Если больше 100 - только для ФИ, между этими двумя значениями простирается некая сумеречная зона, где может оказаться и так и эдак.

Опыт показывает относительную малую полезность этого показателя для подбора оформления автомобильных сабвуферов, хотя идея в принципе здравая. Малая EBP означает: резонансная частота низкая, добротность относительно высокая, что свидетельствует о тяжёлой подвижной системе, а по канону такой динамик, действительно, идёт в ЗЯ. Большое значение EBP говорит о лёгкой «подвижке», на таких головках, действительно, получаются отличные фазоинверторы, но… дома.

У нас, во-первых, огромное, подавляющее число сабвуферных головок имеют значение параметра EBP в диапазоне 50 - 80, что для пессимиста означает неопределённость, а для оптимиста - свободу выбора. Во-вторых, и это уже из практики, не получаются в машине хорошие ФИ на динамиках с канонически хорошими для этого показаниями. Фазоинвертор на динамике с малой добротностью (а так и оказывается, если EBP переваливает за сотню) в свободном пространстве покажет ровную АЧХ со своеобразным, возможно, поведением вблизи нижней граничной частоты, в машине это своеобразие сложится с передаточной функцией и породит, почти без исключений, довольно уродливую характеристику.

Вклад в относительное развенчание «энергетического продукта» внесли и наши испытатели, проведя исследование на реальных образцах сабвуферных головок. Результат был таков: при значении EBP около 50 (по канону - в ЗЯ, и без разговоров) есть шанс получить очень неплохое акустическое усиление в ФИ с сохранением пристойной формы АЧХ, при 90 (по канону уже просится в ФИ) выигрыш в отдаче падает ниже 3 дБ, зачем, спрашивается, париться? Так что для нашего брата получается всё почти наоборот: наиболее эффективные ФИ выходят на базе наиболее «ящичных» головок. Так уж у нас всё устроено…



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта